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ABSTRACT
Wi-Fi human sensing, boosted by latest progress in both sys-
tem innovation and deep analytics, has demonstrated ever-
increasing resolution of users’ activities. Nonetheless, it may
become a spy on users’ private activities such as password
entry or intimate social interactions. Existing countermea-
sures include signal obfuscation and adversarial perturba-
tions to hamper and confuse Wi-Fi sensing, yet they both
require substantial changes inWi-Fi hardware/firmware, and
they at most stay at user level in protection granularity. This
paper presents Poison2Cure, the first semantic-level privacy-
preserving framework for Wi-Fi human sensing systems,
with full compatibility to any underlying hardware. The in-
novation behind Poison2Cure lies in feeding poisoned train-
ing data from (privacy-sensitive) users to the neural model
for Wi-Fi sensing, degrading only the sensing for private
activities while retaining that for regular ones. Moreover, we
tackle the harsh conditions where the neural model is kept
confidential and/or preceded by data cleansing. Our exten-
sive evaluations demonstrate that Poison2Cure reduces over
76% of the accuracy for the private activities while keeping
the accuracy for regular activities largely intact.
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Figure 1: Wi-Fi human sensing services, albeit being
desirable, may cause user privacy breaches.
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1 INTRODUCTION
Wi-Fi-based human sensing techniques have been actively
studied for more than a decade in diverse applications [64],
including vital signmonitoring [44, 79], gesture detection [66,
88], and activity recognition [16, 33]. In distinct contrast to
sensing techniques based on cameras [60, 85], radars [2, 4],
lidars [47, 59], acoustic sensors [6, 56], and wearable add-
ons [21, 58], Wi-Fi human sensing possesses the unique ad-
vantage of piggybacking on Wi-Fi infrastructure that is al-
ready extensively deployed. Recent progress in system inno-
vation has fully enabled multi-user sensing leveraging only
the channel state information (CSI) carried in normal data
traffic from user devices (UD) to an access point (AP) [29, 42].
With this inherent multi-user sensing capability, manufac-
turers can readily endow their APs with context-aware edge
intelligence that supports applications such as cognitive com-
munications [8, 26] and augmented/virtual reality [18, 35],
thus making UDs both lighter and more efficient.
While being a fascinating prospect, transforming every

AP into an intelligent sensor may disturb today’s privacy-
conscious users. Although Wi-Fi human sensing records no
portraits or voices of the users, it can still cause serious
privacy breaches due to the ubiquity of Wi-Fi signals. As il-
lustrated in Figure 1, with a trained neural model processing
a user’s CSI, an AP is able to recognize sensitive activities of
the user, such as its key information entry [40, 74] and inti-
mate social interaction [27, 78]. In this regard, Wi-Fi human
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sensing is controversial: users desire edge intelligence that
responds to gestures or assists health monitoring, yet they
are concerned about their sensitive activities being spied
on. This concern is extremely hard to eliminate due to the
ubiquity of wireless signals, which allows Wi-Fi human sens-
ing to bypass common obstructions and extend beyond the
range limits of cameras and microphones.
To prevent Wi-Fi sensing from compromising users’ pri-

vacy, existing methods involve either wireless transceivers
obfuscating CSI to hide activity-related information [10, 12,
45, 57, 63] or encrypting CSI to prevent unauthorized ac-
cess [11, 25, 48, 52]. Such methods can be deemed as a switch
to turn off the sensing potentials of CSI completely for a user.
Nevertheless, to simultaneously allow for regular sensing
services while disabling sensitive ones, privacy-preserving
Wi-Fi sensing should be realized at a semantic level, i.e., users
should be able to determine which activities can or cannot
be sensed; we refer to the former as regular activities and
the latter as private ones. One feasible approach is injecting
adversarial perturbations to the CSI atWi-Fi transmitters [30]
or receivers [84, 89], which particularly prevents neural mod-
els from recognizing private activities. However, perturbing
CSI at the physical layer requires substantial changes to
Wi-Fi hardware/firmware, making them incompatible with
prevalent infrastructure.

Aiming to close the research gap, this paper presents Poi-
son2Cure, the first semantic-level privacy-preserving frame-
work for Wi-Fi human sensing with full compatibility to any
Wi-Fi hardware. The innovation behind Poison2Cure lies
in users feeding poisoned training data to poison the neural
model during its calibration (also known as fine-tuning) pro-
cess. Such a calibration process is often necessary because of
the much lower spatial resolution of Wi-Fi sensing compared
to that of camera-driven computer vision techniques [53],
which necessitates user-provided training data for neural
models to learn user-specific mapping between activities and
CSI variations. As the poisoning targets at this calibration
process, Poison2Cure has the desirable characteristic that
it requires no real-time manipulations of physical CSI and
only needs to be performed once, yet achieving a lasting
effect. This characteristic makes it fully compatible with all
prevalent Wi-Fi standards and hardware.
To undermine the sensing accuracy for only the private

activities, the poisons injected into the training data need to
be carefully crafted. Nevertheless, how a user can craft the
poisons poses a major challenge for Poison2Cure, because
the relationship between the poisoned training data and the
accuracy of the calibrated neural model is highly intricate
and hard to model, especially by users with generally limited
computational resources. Furthermore, poisoning the train-
ing data may encounter harsher conditions. For example, the
details of the AP’s neural model may be held confidential

to the users, and/or data cleansing methods may be used to
remove abnormal CSI data and filter out noise and jittering.
Such conditions exacerbate the complications for users to
craft effective poisons.
To tackle the above challenges, we design an efficient

CSI poisoning method for realizing Poison2Cure in prac-
tice. Instead of modeling the neural model’s post-calibration
performance, we convert the problem into aligning the gra-
dient of the neural model’s parameters towards minimizing
the user’s semantic-level privacy preservation loss, which
entails a much more efficient solution. We then extend the
efficacy of our method to harsher conditions, handling a con-
fidential neural model by substituting it with an ensemble
of surrogates, while using random dropout and stochastic
model batching techniques to enhance the generalizability
of crafted poisons. Besides, we treat the data cleansing as
power and doppler frequency constraints and enforce their
compliance via proximal projection and spectral cutoff. Our
key contributions are summarized as follows:

• We propose Poison2Cure, the first privacy-preserving
framework for Wi-Fi human sensing, fully compatible
with any underlying hardware; it preserves privacy at
the semantic level by reducing sensing accuracy only
for private activities.
• We propose an efficient CSI poisoning method to craft
poisoned training data; then we extend it to countering
confidential neural models and CSI data cleansing.
• We evaluate Poison2Cure with extensive experiments
on multiple users and environments, confirming that it
reduces the accuracy for private activities by over 76%
while maintaining high accuracy for regular activities.

The rest of the paper is organized as follows. Section 2 in-
troduces the preliminary of multi-userWi-Fi sensing systems
and experimentally motivates us to leverage the calibration
process. Section 3 presents the design of Poison2Cure, includ-
ing the efficient CSI poisoning method and its extensions to
harsher conditions. Section 4 specifies the implementation of
Poison2Cure and its evaluation setup. Section 5 reports the
experimental results. Section 6 discusses the practicability
and susceptibility of Poison2Cure. Related works are briefly
captured in Section 7. Finally, Section 8 concludes this paper.

2 PRELIMINARY AND MOTIVATION
We first introduce the preliminary of multi-user Wi-Fi sens-
ing and demonstrate its user-specific nature. We then de-
scribe potential methods for enabling cross-user sensing and
experimentally compare their performance, demonstrating
the necessity of user calibration. In addition, we examine ex-
isting privacy-preserving approaches and demonstrate their
inefficiency and incompatibility.
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2.1 Multi-User Wi-Fi Sensing
We start with a general scenario shown in Figure 1, where
𝑁 users, each with an UD near him/her, connect to a Wi-Fi
network held by an AP. Receiving data packets from the UD
of a user, the AP captures the Long Training Sequence in the
packets’ preambles [1] and obtains CSI for the wireless chan-
nel between it and the UD. Then, with the edge intelligence
enabled by a neural model, the AP infers the gestures and
activities of the user by processing the CSI.

For the 𝑛-th UD in the proximity of the 𝑛-th user, the CSI
of a certain frequency at time 𝑡 can be expressed as:

ℎ(𝑡) = ℎS + ℎD (𝑡) + ℎ𝑛 (𝑡) +
∑𝑁

𝑛′≠𝑛ℎ𝑛′ (𝑡), (1)

where ℎS represents the collective channel gain of static
environment reflection, scattering, and direct line-of-sight
paths, ℎD (𝑡) is the dynamic channel gain due to surrounding
movements and hardware fluctuations, and ℎ𝑛 (𝑡) and ℎ𝑛′ (𝑡)
respectively denote the channel gains corresponding to the
paths via the 𝑛-th and 𝑛′-th users.

Based on Eqn. (1), motions of the𝑛-th user cause variations
ofℎ𝑛 (𝑡), which are the “driving force” behind sensing his/her
gestures and activities with ℎ(𝑡). Although the variations of
ℎD (𝑡) also change ℎ(𝑡), the randomness and generally low
power of ℎD (𝑡) barely affect the perception of ℎ𝑛 (𝑡) [19].
Moreover, the variations of ℎ𝑛′ (𝑡) is much smaller than that
of ℎ𝑛 (𝑡) owing to the 𝑛-th UD being much closer to the 𝑛-th
user than to the others [29]. As a result, the variations of
ℎ𝑛 (𝑡) dominate the variations of ℎ(𝑡), indicating that the
motions of each user can be sensed separately.

Moreover, the domination ofℎ𝑛 (𝑡) also implies thatmulti-
user Wi-Fi sensing is not susceptible to environmental
interference but highly sensitive to respective users.
Figure 2 experimentally demonstrates this, showing the CSI
variations for drawing circle of different users measured in
two environments. As expected, environmental differences
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(a) Meeting room, User A.
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(b) Lecture room, User A.
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(c) Meeting room, User B.
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(d) Lecture room, User B.

Figure 2: Spectrograms of CSI variations for drawing
circle of different users in two environments.

do not significantly alter the pattern of CSI variations, yet
user differences have a more prominent impact, which may
be owing to the user specifics, e.g., their different body con-
tours and habitual behaviors. Consequently, multi-userWi-Fi
sensing has a user-specific nature, which demands the neural
model to have cross-user sensing capability.

2.2 Methods for Cross-User Sensing
Wi-Fi sensing based on commodity devices is generally deemed
highly domain-specific due to the lack of spatial resolu-
tion [7]. Our analysis in Section 2.1 indicates that a domain
can be reduced from a complete surrounding environment
to a user ; yet, can a neural model be endowed with the cross-
user sensing capability? To answer it, we start with analyzing
existing approaches for cross-domain Wi-Fi sensing, which
are divided into two categories below.

2.2.1 Domain Independent Representation (DIR). The first
category of approaches does not require calibration for a
target domain, as they leverage DIR of CSI as the input of the
neural model to allow cross-domain sensing. The most com-
monly adopted DIR is the spectrogram of Doppler frequency
shift (DFS) of CSI variations [19, 29, 37, 51, 88], which decom-
poses the CSI variations into time-frequency components
to disentangle the influence from environment and user’s
activities. In addition, for gesture recognition, the body ve-
locity profile (BVP) [88] and other similar methods [19, 54]
are proposed to estimate the velocities and directions of body
movements, which are derived from the DFS at multiple Wi-
Fi receivers. Moreover, with the help of adversarial learning
techniques, the environment-independent (EI) feature ex-
traction in [32] and other similar studies [41, 46, 67] propose
to learn a DIR extractor automatically.
However, our practical experiment results below show

that these DIR approaches fail to enable multi-user Wi-Fi
sensing for cross-user sensing. In the experiment, we collect
a dataset comprising 20 hours of labeled sequences of CSI for
ten gesture and body activities of 16 users (see Section 4.2
for details). Leveraging the dataset and the neural model
specified in Section 4.1, we test four representation methods
of CSI, including the basic method (using amplitudes and
phases of channel gains) and three DIR methods, including
DFS spectrogram, BVP, and EI.
In particular, the CSI variations represented by the basic

and DFS methods are respectively handled by the GRU-based
and CNN-based neural models in Section 4.1, while for BVP
and EI, they are handled by the models implemented accord-
ing to [88] and [32], respectively. During training the neural
model, the dataset is split at a 9 :1 ratio for training and vali-
dation, and the test results are evaluated on the validation
set. Additionally, we adopt the “leave-one-out” strategy [69]
to study their cross-user capability: an test user is selected
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(a) Accuracy for training users in different cases of left-out test users.
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(b) Accuracy for different left-out test users.

Figure 3: Comparison of the DIR methods’ sensing
accuracy for training users and test users.

while the rest of the users are for the training. In evaluation,
we focus on accuracy, i.e., the proportion of CSI samples
whose corresponding activities are correctly classified rel-
ative to the total number of samples. Figures 3(a) and 3(b)
show that, though all the methods achieve high accuracy for
training users, their accuracy for test users is much lower,
showing the inefficacy of DIR methods.
The reason for DIRs’ inefficacy is twofold. On one hand,

the proximity between a user and its UD makes the CSI
variations of activities highly dependent on the nuances
of the user’s body figure and behaviors. Such dependency
is challenging for the DIR methods since they assume a
similar relationship between activities and CSI variations
across domains. On the other hand, the CSI to sense a user
is obtained from a single AP-UD link with normal packet
rates, as opposed to multiple links with near-saturated traffic
in [32, 88]. These distinctions in physical complexity and CSI
sufficiency significantly hinder the effectiveness of DIRs.

2.2.2 Fine-Tuning (FT). In contrast to DIR-based approaches,
the FT-based approach [81, 83] use a small set of labeled data
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Figure 4: Efficacy of FT. (b) to (e) are obtained in the
case of basic method and 30 samples per activity.

collected in the target domain, referred to as an FT dataset,
to calibrate the neural model for a few epochs with a small
learning rate, adapting the neural model to the specifics of the
target domain. By conducting the above calibration process
for each user, the FT approach effectively enables cross-user
sensing capabilities. To demonstrate their efficacy, we let
each test user provide an FT dataset of 10 to 40 samples per
activity and continue with the experiments in Section 2.2.1.
Figure 4(a) shows that the calibration in FT substantially
improves the accuracy for test users of all the methods: With
30 samples per activity, the average accuracy raises from
0.20 to 0.82. Nevertheless, the FT approach has a disconcert-
ing potential to raise the accuracy even for the activities
whose samples are removed from the FT dataset due to being
deemed private. This is demonstrated in Figure 4(b), where
using the FT dataset without TP and HS samples still leads
to an increase in their average accuracy, from 0.17 to 0.30.1
This phenomenon can be analyzed via the t-distributed

Stochastic Neighbor Embedding (tSNE) [50] of extracted fea-
tures shown in Figures 4(c)–4(e). Here, the extracted features
are the latent embeddings at the layer preceding the final
classification layer of the neural model trained in the basic
method case. Comparing Figures 4(c) with 4(d), one can ob-
serve that the FT enhances the boundary clarity of feature
clusters of the activities. When no TP or HS samples are used,
the FT on other samples still allows the neural model to learn
the influence of user specifics on the CSI-activity relationship.
Owing to the generalizability of such influence, learning it
helps the neural model recognize TP and HS, leading to more
concentrated clusters of TP and HS in Figure 4(e) than those
in Figure 4(c). Meanwhile, the fact that the clusters of the
other activities have clearer boundaries also contributes to
more accurate recognition of TP and HS.

Although the average accuracy of 0.30 for TP and HS is rel-
atively low, it raises a non-neglectable privacy risk to users.
In particular, given that an AP is deployed for the long-term,
a relatively-low accuracy still enables the AP to gradually
accumulate CSI data of users’ private activities, from which
sensitive information of users can be derived. Thus, to elimi-
nate the privacy risk, users have strong motivation to pursue
that the AP has zero sensing accuracy for private activities.
Remarks: With the above results, we acquire two key moti-
vations: i) An FT process of user calibration is necessary for
enabling cross-user capability in multi-user Wi-Fi sensing;
ii) Removing private activity samples from the FT dataset
is inadequate for preserving user privacy as regular activ-
ity samples help neural model recognize private activities.

1In Figure 4, the acronyms are bending (BD), jumping (JP), rotating (RT),
walking (WK), push&pull (PP), sweeping (SW), drawing circle (DC), drawing
zigzag (DZ), typing-on-phone (TP), and hand-shaking (HS).
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Additionally, we remark that the FT dataset needs to be pro-
vided by the user. Although the AP can also measure CSI
given channel reciprocity, it cannot establish a labeled CSI
dataset without the user specifying the start and end time of
activities and providing accurate activity labels.

2.3 Existing Privacy Preserving Approaches
To achieve cross-user sensing while preserving user pri-
vacy, existing studies resort to adversarial perturbations [36].
Specifically, they consider modifying either Wi-Fi transmit-
ters [30] or receivers [72, 84, 89] to apply adversarial per-
turbations to input CSI of neural models. Nevertheless, they
face the following difficulties in practice.
Firstly, applying adversarial perturbations to real-time

CSI is incompatible with prevalent Wi-Fi infrastructure. Al-
though accessing CSI from the physical layer is widely sup-
ported [23, 34], modifying it requires a systematic revamp
to the communication protocol and underlying firmware,
which is prohibitively expensive. Injecting adversarial per-
turbations at the application layer rather than the physical
layer may seem to be a plausible option, yet it fails to thwart
malicious AP manufacturers. Because AP manufacturers can
leave a backdoor to bypass the perturbations at the applica-
tion layer by directly obtaining clean CSI from the physical
layer. A few adversarial schemes leveraging third-party de-
vices to attack Wi-Fi sensing may be exploited for privacy
preservation, which adversarially perturb CSI through strate-
gical spectrum jamming [43], multipath manipulation [90],
andmedium access competition [31]. However, such schemes
inevitably interfere with normal communications and may
lead to security issues owing to their attack nature.
Secondly, due to the user-specific nature of multi-user

Wi-Fi sensing, adversarial perturbations face challenges in
achieving cross-user efficacy as well. Thus, applying the per-
turbations designed for training users may be ineffective for
test users, even resulting in complete destruction of sensing
abilities. To demonstrate this, continuing with the experi-
ment in Section 2.2.2, we arbitrarily choose 15 users as the

BD JP RTWKPP SWDC DZ TP HS
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.00 .00 .00 .00 .09 .82 .00 .09 .00 .00
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(a) For a user in the training group.
BD JP RTWKPP SWDC DZ TP HS

BD
JP
RT
WK
PP
SW
DC
DZ
TP
HS

.00 .01 .00 .01 .88 .01 .01 .09 .00 .00
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.00 .04 .09 .00 .60 .05 .05 .16 .00 .00

.01 .03 .02 .01 .81 .03 .01 .08 .00 .00

.02 .05 .00 .02 .83 .02 .01 .05 .00 .00
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(b) For the test user.

Figure 5: Confusion matrices for activities of (a) an
user in the training group and (b) the test user, given
CSI being adversarially perturbed.

training group, design adversarial perturbations for them
using [36], and test the perturbations on the remaining user.
Figure 5(a) verifies that, for the training group, the adver-
sarial perturbations work as expected, causing the neural
model to misclassify only the private activities. However,
upon applying the adversarial perturbations to the CSI data
of the test user, the neural model misclassifies all the activi-
ties as PP, as shown in Figure 5(b). This anomalous outcome
is probably because PP is the default class to which the neural
model categorizes all unrecognized activities.

3 DESIGN OF POISON2CURE
Aiming to preserve users’ private activities in multi-user Wi-
Fi sensing systems, we hereby propose Poison2Cure, the first
framework that achieves semantic-level privacy preservation
with full compatibility to any underlying Wi-Fi hardware.
Leveraging the calibration process necessary for cross-user
sensing, Poison2Cure allows users to poison their FT datasets,
causing neural models to misclassify user-defined private
activities. Below, we start with a theoretical formulation of
poisoning the FT process as an optimization problem. Then,
we design an efficient CSI poisoning method to handle the
problem and extend it to harsher conditions.

3.1 Poisoning the Fine-Tuning
Following the scenario in Section 2.1, Poison2Cure is based
on a Wi-Fi network set up by an AP serving multiple users.
Due to the symmetry statuses of the users, we focus on an
arbitrary user in the following. We assume the user intends
to keep a set P of 𝑃 activities private while requiring Wi-Fi
sensing services for another set R of 𝑅 regular activities. The
AP, however, does not cooperate in preserving private activ-
ities and uses a neural model to recognize all the activities
based on CSI data. Without loss of generality, the neural
model is represented by g(·|𝜽 ) with parameters 𝜽 , mapping
a CSI data 𝑪 = (𝒄1, · · ·, 𝒄𝐿) ∈ R𝐿×𝑇 to an activity 𝑎 ∈ R ∪ P.
Here, 𝒄ℓ ∈ R𝑇 (ℓ = 1, · · ·, 𝐿) denotes the sequence of the ℓ-th
CSI feature at time 𝑡1, · · ·, 𝑡𝑇 , which are associated with the
random packet arrivals and thus may be non-equally spaced
in time. In addition, the neural model has been pre-trained
by the AP manufacturer, resulting in parameters 𝜽pt.
To achieve cross-user sensing, the AP calibrates its neu-

ral model by FT, requiring the user to provide a small FT
dataset of𝑀 labeled CSI data. Using this FT dataset, the AP
trains the neural model and calibrate its parameters to 𝜽ft.
Due to the user’s privacy concern, it only provides labeled
CSI data for activities in R. The FT dataset can be expressed
as Dft = {(𝑪𝑘 , 𝑎𝑘 ) |𝑎𝑘 ∈ R}𝑀𝑘=1, where 𝑎𝑘 is the correspond-
ing activity label of 𝑪𝑘 . However, as demonstrated in Sec-
tion 2.2.2, FT on Dft enhances the sensing accuracy for the
private activities unintendedly. For the purpose of privacy
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Figure 6: Illustrations of (a) Poison2Cure’s workflow
and (b) the effect of poisoning the FT dataset.

preservation, Poison2Cure enables the user to inject poisons
into the FT dataset, resulting in a poisoned FT dataset:

D̃ft = {(𝑪𝑘 + 𝑿𝑘 , 𝑎𝑘 ) | (𝑪𝑘 , 𝑎𝑘 ) ∈ Dft}, (2)

where 𝑿𝑘 denotes the CSI poison added to CSI data 𝑪𝑘 . The
key of Poison2Cure is to craft the set of CSI poisons X =

{𝑿𝑘 } so that FT on D̃ft = Dft + X will shift the parameters
to 𝜽ft instead of 𝜽ft. The parameters 𝜽ft should preserve the
user’s privacy at a semantic level, solely diminishing the
neural model’s ability in recognizing activities in P. The
workflow of Poison2Cure is summarized as Figure 6(a).

Accordingly, the poison crafting of Poison2Cure can be
formulated as the optimization problem below:

(P1) : min
X

𝐿u (𝜽ft) = E
(𝑪,𝑎)∼𝛤

[
𝐿
(
g(𝑪 |𝜽ft), 𝑎

)
·
(
𝐼R (𝑎) − 𝐼P (𝑎)

) ]
,

where the expectation is taken over the joint distribution 𝛤

of CSI data and activities of the user, 𝐿(·) denotes the cross-
entropy loss function, and 𝐼R (𝑎), 𝐼P (𝑎) denote the indicator
functions, which equal one if 𝑎 in set R and P, respectively;
otherwise, zero. We refer to the loss function 𝐿u (𝜽ft) in (P1)
as the user’s loss.

Nevertheless, solving (P1) faces the following challenges:
Firstly, due to the massive number of parameters and their
iterative update during the FT, the relationship between
𝐿u (𝜽ft) and X is extremely complex. Secondly, considering
the limited computational resources of the user, it is also es-
sential to ensure efficiency in crafting the poisons, resulting
in even more difficulties in solving (P1). Moreover, harsher
conditions such as a confidential neural model and data
cleansing of the AP may further hinder the poison crafting.

3.2 Efficient CSI Poisoning
We first design an efficient CSI poisoning method handling
the first two challenges, given that the parameters of the
neural model are known by the user. Consider the iterative
parameter update in the FT, which can be expressed as:

𝜽 ( 𝑗+1) = 𝜽 ( 𝑗 ) − 𝜂∇𝜽𝐿ft (𝜽 ( 𝑗 ) ). (3)

Here, 𝑗 = 1, · · ·, 𝐽 is the index of iteration with 𝜽 (0) = 𝜽pt
and 𝜽ft = 𝜽 ( 𝐽 ) , 𝜂 is the learning rate in the FT, and 𝐿ft (𝜽 ( 𝑗 ) )
represents the AP’s FT loss given parameters 𝜽 ( 𝑗 ) , which can
be expressed as

𝐿ft (𝜽 ( 𝑗 ) ) =
∑︁

(𝑪+𝑿 ,𝑎) ∈ D̃ft

𝐿
(
g(𝑪 + 𝑿 |𝜽 ( 𝑗 ) ), 𝑎

)
. (4)

We note that the AP’s FT loss in Eqn. (4) differs from the
user’s loss defined in (P1) since the AP aims to reduce the
average recognition loss while ignoring the user’s privacy
concerns.
Even though the number of iterations 𝐽 is typically on

the order of tens (to avoid overfitting), it can still lead to an
extremely complex relationship between X and 𝜽ft due to
the iterative gradient calculations. Therefore, to convert (P1)
into a tractable form, it is imperative to approximate 𝜽ft. In-
tuitively, we could approximate 𝜽ft by 𝜽 (1) , resulting in the
objective function for (P1) to be 𝐿u (𝜽 (1) ). However, crafting
X by X ← X − 𝛼∇X𝐿u (𝜽 (1) ), with 𝛼 being the step size for
poison crafting, still incurs heavy computational burdens ow-
ing to the calculation of ∇X𝐿u (𝜽 (1) ), which can be expressed
as below based on the chain rule:

∇X𝐿u (𝜽 (1) ) = ∇𝜽 (1)𝐿u (𝜽
(1) )∇X𝜽 (1) , (5)

= 𝜂2∇𝜽𝐿u (𝜽 (1) )∇2𝜽𝐿ft (𝜽pt)∇X
(
∇𝜽𝐿ft (𝜽pt)

)
.

The second order derivatives ∇2𝜽𝐿ft (𝜽pt) and ∇X
(
∇𝜽𝐿ft (𝜽pt)

)
require second-order back-propagation (BP) processes, which
results in the heavy computational burdens.
In Eqn. (5), ∇X𝜽 (1) is necessary for evaluating the influ-

ence of the CSI poisons on the parameter update and can
hardly be further simplified. Thus, we focus on alleviating
the burden of computing ∇𝜽 (1)𝐿u (𝜽 (1) ). Since 𝜽 (1) ≈ 𝜽pt, we
approximate ∇𝜽 (1)𝐿u (𝜽 (1) ) with ∇𝜽𝐿u (𝜽pt). Then, Eqn. (5)
can be approximated by

∇X𝐿u (𝜽 (1) ) ≈ ∇𝜽𝐿u (𝜽pt)∇X𝜽 (1) (6)

= 𝜂∇X
(
− ∇𝜽𝐿u (𝜽pt) · ∇𝜽𝐿ft (𝜽pt)

)
. (7)

We note that through the approximation applied in Eqn. (6),
the original ∇𝜽 (1)𝐿u (𝜽 (1) ) that requires a second-order BP is
reduced to a constant gradient vector. By this means, the com-
putational expense is at least halved since only one second-
order BP process is needed now. Therefore, with Eqn. (7), CSI
poisons can be crafted efficiently by a resource-limited user.
We note that the user can calculate ∇𝜽𝐿u (𝜽pt) by jointly us-
ing its prepared FT dataset and several additionally-collected
samples per private activity.
More specifically, to craft CSI poisons X, the user first

calculates the gradient term ∇𝜽𝐿u (𝜽pt) in (7), which is inde-
pendent from X and thus can be considered as a constant
vector when optimizing X. Then, with X added to the FT
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Figure 7: Influence of CSI poisons on (a) correlation
between gradient of the FT and that of user’s loss and
(b) accuracy for private activities and the user’s loss.

dataset, the user evaluates∇𝜽𝐿ft (𝜽pt). Since the inner product
−∇𝜽𝐿u (𝜽pt) · ∇𝜽𝐿ft (𝜽pt) is a scalar and depends on X, it can
be treated as a loss function of X. Its gradient with respect
to X can be calculated by the BP, which derives ∇X𝐿u (𝜽 (1) )
in Eqn. (6).
One can readily observe in Eqn. (7) that the poison craft-

ing is equivalent to aligning ∇𝜽𝐿u (𝜽pt) and ∇𝜽𝐿ft (𝜽pt) by
maximizing their inner product correlation. Notably, this
accords with the intuition that the CSI poisons should align
the neural model’s parameter update in the FT toward
minimizing the user’s loss, which is illustrated in Fig-
ure 6(b). Furthermore, although Eqn. (7) focuses on a single
iteration step, the crafted CSI poisons can continuously align
the gradients in the FT toward reducing the user’s loss.
To demonstrate this, continuing from Section 2.2.2, we

poison the FT dataset in the 30-sample case using poisons
crafted with Eqn. (7). The user additionally uses 30 samples
per private activity (TP and HS) in calculating ∇𝜽𝐿u (𝜽pt);
while the complete dataset for the test user is adopted to
evaluate the user’s loss after the FT. Figure 7(a) shows that
the gradient in the poisoned FT and that of the user’s loss
retain a positive correlation for around twenty iterations,
proving that the efficacy of the poisons extends well beyond
the first FT iteration. In stark contrast, for a clean FT dataset,
the correlation is mostly negative, since the clean FT raises
the accuracy for private activities, which contradicts the
user’s goal. Figure 7(b) demonstrates that with this positive
correlation achieved by poisoning, the user’s loss and the
accuracy for private activities are significantly reduced, while
FT on the clean dataset leads to an increase of both.

3.3 Extending to Harsher Conditions
We further extend the CSI poisoning method to handle the
following conditions: i) the neural model is confidential, and
ii) filtering methods are employed to cleanse CSI data.

3.3.1 Poisoning Confidential Neural Models. While open-
source neural models are recognized as the key to the pop-
ularization and trustworthiness of artificial intelligent ser-
vices [61], an AP manufacturer might also hold details of

its neural model confidential to thwart piracy by its com-
mercial rivals. For instance, the AP may deny access to the
specific components and parameters of the neural model,
only compromising to disclose its functionality and coarse
architecture to gain users’ trust. Under this condition, the
poison crafting is impeded as the user cannot calculate the
gradient of the neural parameters required in Eqn. (7).

To tackle this issue, a common approach is to leverage an
ensemble of surrogate models—neural models that share the
same functionality and general architecture as the confiden-
tial one, but with full access to details—then craft the poi-
sons based on these surrogates instead. The intuition is that
the crafted poisons exhibit generalizability to models with
similar architectures [22], the principle of which has been
systematically analyzed in [15]. Specifically, to select the
surrogate models, we integrate three techniques below, ex-
plicitly addressing the uncertainty of the confidential model
in terms of its architecture, initial point, and pre-training:
• Diversified Architecture: The ensemble includes multiple
neural models based on the coarse architecture, each with
a different number of neural layers and feature dimensions.
• Randomized Initialization: The surrogate models in the
ensemble are initialized with different random parameters.
• Staggered Epochs: The surrogate models are pre-trained for
staggered numbers of epochs within an empirical range.2

However, the limited resources of the user restrict the
ensemble size, resulting in challenges to craft generalizable
CSI poisons. To enhance the generalizability of the crafted
poisons, during each step of poison crafting, we adopt the
dropout technique [62] to randomly shortcut neurons of the
surrogate models, allowing them to represent a larger variety
of architectures.
Additionally, at each poison crafting step, we randomly

select a batch of surrogate models from the ensemble and
calculate the gradients of the average loss of all the selected
models. We iteratively update a single set of CSI poisons
using the sign instead of the exact values of the calculated
gradients. The gradient signs represent an update direction
for CSI poisons aligned with a broader range of potential
surrogate models, rather than being specific to one of them.

3.3.2 Poisoning Against CSI Data Cleansing. In the pursuit
of higher training data quality, the AP may employ some
data cleansing methods [49], which potentially neutralize
the CSI poisons. Common cleansing methods for CSI data
include: i) Low-pass filter, which eliminates high-frequency
temporal CSI variations due to hardware jittering [70]; ii)
Outlier removal, which eliminates CSI data with abnormally
2If the pre-training dataset is unavailable, the user can resort to similar
public datasets of Wi-Fi sensing instead. We show in later Figure 13(a)
that pre-training the surrogate models with datasets collected in different
environments does not affect the efficacy of Poison2Cure.
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high or low power owing to strong interference or temporary
blockage [39].
To ensure that the poisoned CSI data withstand these

cleansing methods, we establish frequency and power con-
straints for CSI poisons, which are represented by Doppler
frequency upper bound 𝑓ub and power upper bound 𝑃ub. The
power upper bound can be enforced by the projected gradient
descent (PGD) [55, 68], projecting the CSI poisons after each
crafting step back to the Euclidean ball with radius

√
𝑃ub:

𝑿 ←
√︁
𝑃ub (𝑿 + Δ𝑿 )/

(
max(∥𝑿 + Δ𝑿 ∥2,

√︁
𝑃ub)

)
. (8)

Here, Δ𝑿 denotes the original change to CSI poison𝑿 , which
is calculated based on Eqn. (7), and ∥·∥2 denotes the Euclidean
norm of the argument.
Compared with the power upper bound, the frequency

upper bound is more difficult to enforce. In multi-user Wi-Fi
sensing, the difficulty is exacerbated since CSI poison 𝑿 is
non-equally spaced in time as a result of CSI data 𝑪 span-
ning across irregular time intervals. To handle this difficulty,
rather than filtering the CSI poisons in the time domain,
Poison2Cure directly crafts them in the Doppler frequency
domain with a cutoff at 𝑓ub: for CSI data 𝑪 ∈ R𝐿×𝑇 (defined
in Section 3.1), a spectral matrix 𝑺 = (𝒔1, · · ·, 𝒔𝐿) ∈ C𝐿×𝐹 is
used to generate the CSI poison 𝑿 by:

𝑿 = 𝑺𝑬 = 𝑺 exp
(
− 2𝜋 i · 𝒇 𝒕⊤

)
, (9)

where exp(·) is the element-wise exponential function, i is
the imaginary unit, 𝒕 = (𝑡1, · · ·, 𝑡𝑇 ) is the sequence of sam-
pling time of the CSI data, 𝒇 = (0, 𝑓ub/(𝐹 − 1), · · ·, 𝑓ub) com-
prises 𝐹 frequency components below 𝑓ub, and (·)⊤ denotes
the transposition. It can be observed from Eqn. (9) that 𝑿
should have no frequency components higher than 𝑓ub.

4 PROTOTYPING & EXPERIMENT SETUP
We describe the implementation of Poison2Cure in a com-
modity Wi-Fi network and then specify its experiment setup.

4.1 Implementation of Poison2Cure
Our prototype of Poison2Cure is built upon a multi-user Wi-
Fi human sensing system shown in Figure 8(a). The system
consists of an AP and four UDs, each placed around 20cm
from its user’s chest. The UDs include a Google Pixel 6A, a
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Figure 8: The prototype of Poison2Cure (a) and its two
test environments shown in (b) and (c).

Xiaomi 14 Ultra, an iPhone XR, and an iPhone 13, with CSI
poison crafting uniformly conducted on an Alienware laptop
to streamline prototype development. The AP is a Netgear
Nighthawk X10 router connected to a server emulated by
an Acer TravelMate laptop, providing activity recognition
services based on the CSI of data traffic. The Wi-Fi network
setup by the AP follows IEEE 802.11ac standard [1] and
operates at 5.28GHz with a bandwidth of 40MHz. The server
uses PicoScenes [34] to extract raw CSI samples from QoS
Data packets. Each raw CSI sample is a complex matrix
of size 117 × 2, corresponding to the channel gains of 117
subcarriers across two channels between the router and a UD.

To pre-process a raw CSI sample into CSI data, we use the
basic method in Section 2.2.1 because it is computationally
efficient and preserves all information, while we also use
the DFS method in the benchmark comparison. For both
methods, the conjunction multiplication [86] is applied to the
channel gains of the two channels to cancel random phase
errors [7]. For the basic method, we concatenate the CSI
amplitudes and the cosine and sine values of the CSI phases
to form a 1D feature vector of length 351. For the DFSmethod,
we apply the short-time Fourier transform (STFT) [65] on the
channel gain sequences of all the subcarriers after resampling
by 500 points per second. A one-second time window with a
half-second overlapping is used in STFT, and the resulting
spectra of all the subcarriers are arranged as a 2D feature
map with two channels for the real and imaginary parts,
which is finally resized to be a 128× 128× 2 array. These pre-
processing steps are common for CSI-based Wi-Fi sensing,
extracting primitive features from CSI.
For the CSI data in the user-provided FT dataset, we as-

sume it comprises the primitive features of CSI since using
primitive features reduces the overhead in uploading the FT
dataset. As the relationship between the primitive features
and the raw CSI is definitive and well-established, poisons
for the primitive features can be readily mapped to corre-
sponding poisons for the raw CSI. Therefore, regardless of
whether the user provides the primitive features or raw CSI,
Poison2Cure remains effective.

The neural model of the AP is designed following two com-
mon architectures: i) the gated recurrent unit (GRU)-based
one [88], which handles sequences of feature vectors ob-
tained by the basic method, and ii) the convolutional neural
network (CNN)-based one [32], which tackles the 2D feature
map obtained by the DFS method. The GRU-based model
comprises a two-layered multi-layer perceptron (MLP), two
GRU layers, and a two-layered linear classifier. The CNN-
based model comprises three 2D CNN layers with a kernel
size of 3 and a stride of 2, each followed by an average pool-
ing layer with a factor of 4, and then a one-layered MLP and
a two-layered linear classifier. In both models, the output
hidden features of MLPs have 64 dimensions by default.
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4.2 Experiment Setup
4.2.1 Datasets. We collect a large dataset comprising 20
hours of raw CSI samples for 10 activities of 16 users in
two environments, including a meeting room (MR) and a
lecture room (LR), as illustrated in Figures 8(b) and 8(c), re-
spectively. The 16 users are invited volunteers of 11 males
and 5 females between the ages of 21 and 53. The 10 ac-
tivities include 8 regular ones with low privacy concerns,
comprising 4 body activities: bending (BD), jumping (JP),
rotating (RT), and walking (WK); and 4 gesture activities:
push&pull (PP), sweeping (SW), drawing circle (DC), and
drawing zigzag (DZ). The remaining 2 activities are deemed
as more privacy-sensitive, which are typing-on-phone (TP)
and hand-shaking (HS) with one another.3

During the data collection for an activity, four users at the
positions indicated in Figures 8(b) or 8(c) perform the activity
simultaneously,4 with each sample consisting of two seconds
of activity and one second of rest. To generate normal data
traffic, the UDs engage in an online Zoom meeting. After
segmenting, pre-processing, and labeling the CSI samples,
the dataset is formed. We select an arbitrary user as the
test user and use the data from the rest of the users to pre-
train the neural model. The test user uses 30 samples per
regular activity to form its FT dataset and additionally uses
30 samples per private activity during crafting CSI poisons.
The rest of data of the test user is used to test the objective of
(P1). These experiments strictly follow our IRB requirements.

4.2.2 Hyper-parameters. In the pre-training, the learning
rate is 10−3, and the number of epochs is 100, which ensures
convergence. As for the FT process, a smaller learning rate of
10−4 is adopted to avoid over-fitting, and the number of FT
epochs is 40. When crafting CSI poisons, by default, we begin
with a zero initial point and update the CSI poisons iteratively
for 100 steps based on Eqn. (7) by the sign stochastic gradient
descent [5] with a step size of 0.006.
When the neural model is confidential, we employ an

ensemble of 32 surrogate models, whose architectures, initial
points, and numbers of pre-training epochs are different
from the actual model, with values sampled between 0.5 and
1.5 times those of the actual ones. In addition, the size of the
stochastic model batch in each step of poison crafting is 1,
and the dropout rate is 0.1.When crafting CSI poisons against
cleansing, the power upper bound ensures a 30dB power ratio
between the CSI data and the CSI poison; and the frequency
upper bound is 32Hz, where the spectrum is discretized into
256 components. The influence of these hyper-parameters is
further evaluated in Sections 5.1.2 and 5.1.3.

3These activities raise privacy concerns because TP may allow password
inference [28], and HS can expose social interaction [78].
4When the four users perform HS, they form two pairs at diagonal positions.

5 EVALUATION RESULTS
Weevaluate the overall performance throughmicro-benchmark
studies, benchmark comparison, and analyses of factors im-
pacting poisoning.

5.1 Micro-benchmark Studies
5.1.1 Efficiency of Crafting CSI Poisons. In Figure 9(a), we
compare the computational complexity of the proposed ef-
ficient CSI poisoning method with the approximation in
Eqn. (6) and the poisoning method without it, i.e., poison
crafting based on Eqn. (5). We measure the crafting time of
CSI poisons for neural models of different sizes, determined
by the dimensions of hidden features. One can observe that
with the approximation in our method, the computational
time is reduced by about 58%, which is in accordance with
our analysis for Eqn. (6).

Besides, Figure 9(b) shows that the proposed method crafts
more effective CSI poisons for minimizing the user’s loss
compared to the methods without the approximation. This
is probably because maximizing the gradient correlation in
Eqn. (7) utilizes the information in all the parameters of the
neural model, yielding higher generalizability to multiple
FT iterations. Moreover, one can observe in Figure 9(b) that
the method without the approximation is susceptible to the
difference between the FT learning rate 𝜂 assumed in poison
crafting and the actual one 𝜂′. In distinct contrast, the pro-
posed CSI poisoning method is unaffected by such difference
because it is not dependent on predicting the neural model’s
parameters after an FT iteration, which is required for the
other method to calculate ∇𝜽𝐿u (𝜽 (1) ) in Eqn. (5).

5.1.2 Efficacy of Poisoning Confidential Model. Secondly,
we evaluate the efficacy of poisoning a confidential model
with the method proposed in Section 3.3.1. The actual model
is a GRU-based model with two GRU layers and 64 dimen-
sions of hidden features, which is pre-trained for 100 epochs.
The ensemble comprises the surrogate models, which are
randomly sampled from models with 1 to 3 GRU layers, 32 to
96 dimensions of hidden features, and pre-trained for 50 to
150 epochs from different random initial points. Figure 10(a)
illustrates the accuracy for the test user’s private activities
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ods with and without the proposed approximation.
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Figure 10: Poisoning the confidential neural model (a)
given different hyperparameters and (b)-(d) in different
cases of confidentiality. Interpolation is applied to (a)
to fill in the regions between the evaluation points.

given different dropout rates and model batch sizes during
the poison crafting. It can be observed that using a small
dropout rate and a small model batch size improves the gen-
eralizability of CSI poisons to poison the confidential model.
Thus, we adopt the best hyper-parameters, i.e., the dropout
rate of 0.1 and the model batch size of 1, in our experiments.

In Figures 10(b)–10(d), we evaluate the individual cases of
confidential architecture, initial point, and number of pre-
training epochs. It is evident that they show similar trends:
as the number of surrogate models increases, the crafted CSI
poisons become more effective for the confidential model in
terms of preserving private activities. These results prove the
capability of Poison2Cure to achieve semantic-level privacy
preservation for confidential neural models.

5.1.3 Efficacy of Poisoning under Constraints. Thirdly, we
show that the proposed method in Section 3.3.2 can craft
effective CSI poisons under different power and Doppler fre-
quency upper bounds. Figure 11(a) demonstrates the value
distributions of the crafted poisonswithout constraint (which
results in an average 22.5 dB power ratio between CSI data
and CSI poisons) and those bounded by 25 dB and 35 dB, and
Figure 11(b) compares their respective performance in terms
of the average accuracy for regular and private activities after
the FT. It is evident in Figure 11(a) that with our method, the
power of the crafted CSI poisons is effectively reduced, while
it maintains effective semantic-level privacy preservation, as
proven by Figure 11(b). In addition, Figure 11(b) shows that
constraining the CSI poisons in power mitigates the poisons’
impact on the accuracy for regular activities.
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Figure 11: Comparison between the CSI poisons given
different power and Doppler frequency upper bounds.

On the other hand, Figure 11(c) shows the spectral mag-
nitudes of the crafted poisons without a Doppler frequency
bound and those bounded by 4Hz, 16Hz, and 64Hz, while
Figure 11(d) illustrates their respective performance. It is
evident that the proposed method effectively suppresses the
frequency components of the CSI poisons that exceed the
frequency upper bound, despite a slight degree of leakage.
In Figure 11(d), two interesting observations can be drawn:
Firstly, the crafted CSI poisons can remain quite effective
even under a stringent upper bound of 16Hz. Secondly, the
64Hz frequency upper bound slightly enhances the efficacy
of CSI poisons for preserving private activities. In addition,
we note that the efficacy decrease given the bounds of 4Hz
and 16Hz is mainly because the datasets for both pre-training
and FT are not filtered accordingly. When the neural model is
trained with data filtered by similar bounds, the CSI poisons
bounded by an even lower Doppler frequency (e.g., 2Hz) can
remain highly effective (see Section 5.3.3).

5.2 Benchmark Comparison
Besides the proposed method (Poison) and the baseline with
no privacy preservation (Clean), we compare Poison2Cure
with two benchmark methods below in terms of the resulting
accuracy for regular and private activities, using both the
GRU- and CNN-based neural models.
• Data Replacing (Replace): In the FT dataset, randomly se-
lect CSI data of regular activities and replace them with
CSI data of private activities, while keeping their labels
unchanged to make the neural model misclassify private
activities. This emulates the label-flipping attack. For a
fair comparison, the replacement ensures all regular and
private activities have the same number of CSI data.
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Figure 12: Benchmark comparison under different
cases of neural models.

• Channel Interfering (Interfer): Without changing the FT
dataset, the user injects noise into the CSI by interfering
with the Wi-Fi channel when performing private activities.
For covertness and a fair comparison, the noise power is
set to be 30dB below the CSI power.
Figures 12(a) and 12(b) show that Poison2Cure outper-

forms the two benchmarks significantly. Averaged across the
cases for GRU-based and CNN-based models, Poison reduces
the accuracy for private activities by 76%, compared to 52%
and 11% for Replace and Interfer, respectively. Moreover, the
second-best method, Replace, sacrifices 7.4% of original accu-
racy for regular activities, which is 2.3 times that of Poison.

The reason that Replace is less effective than Poison is
twofold: i) Poison adjusts the complete FT dataset, while Re-
place can only change part of it to maintain the accuracy for
regular activities; ii) Replace makes the neural model mini-
mize the loss for some intentionally erroneous classifications,
which is generally less efficient than directlymaximizing the
classification loss as achieved in Poison. Moreover, Replace
achieves lower accuracy for regular activities since introduc-
ing incorrectly labeled CSI data reduces the already small
amount of training data for regular activities. As for Interfer,
it does not achieve satisfactory privacy preservation under
the same power constraint as Poison, owing to the general
robustness of neural models to random noises.

5.3 Factors Impacting Poisoning
Below, we evaluate the impact of six practical factors on
Poison2Cure. We focus on the GRU-based model case, since
the results for the CNN-based model are similar.

5.3.1 Environments and Users. To evaluate the impact of
environments, we consider four cases in Figure 13(a). In the
name of each case, the left word indicates the environment
whose CSI data is used for the pre-training, and the word
on the right indicates the environment where the test user
obtains and poisons its FT dataset. Figure 13(a) shows that
environments have no substantial impacts on the sensing per-
formance, regardless of whether the FT dataset is poisoned
or not. The results of the “MR-LR” and “LR-MR” cases also
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Figure 13: Impact of environments and test users.

imply that FT with a dataset collected in a different environ-
ment than the pre-training one has no significant impact on
Poison2Cure. On the other hand, Figure 13(b) shows that the
sensing accuracy after FT varies across different test users.
This is because the user-specific nature of multi-user Wi-Fi
sensing makes the sensing accuracy of the neural model de-
pendent on test users even after the FT. Nevertheless, across
different test users, Poison2Cure demonstrates significant se-
mantic privacy preservation consistently, reducing accuracy
for private activities by 81% on average.

5.3.2 Private Activities and FT Datasets. We evaluate the
impact when the test user defines different activities as pri-
vate while treating the others as regular. From Figure 14(a),
one can observe that after a clean FT process, the accuracy
for private activity varies depending on which activity is
deemed private; however, Poison2Cure consistently reduces
it to less than 0.08. Besides, we evaluate the influence of
the size of FT dataset. Figure 14(b) verifies that when the
FT dataset is larger, the FT process enhances the sensing
accuracy for both regular and private activities to a larger
extent. More importantly, the larger FT dataset also benefits
the semantic-level privacy preservation since using more
CSI data also yields a higher design freedom for CSI poisons.

5.3.3 Outlier Removal and Low-Pass Filter. Finally, we evalu-
ate the impact of AP’s data cleansing. We consider the cases
where the outlier removal of the AP removes 10% to 50% of
the CSI data with either the lowest or highest power in the FT
dataset. As we restrict the power of CSI poisons to be 30dB
lower than the CSI data, poisoning the FT dataset hardly
affects the removal. Moreover, Figure 15(a) demonstrates
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Figure 14: Impact of private activity and size of FT
dataset.
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Figure 15: Impact of the outlier removal and low-pass
filter, while power and Doppler frequency bounds are
employed to counter the CSI data cleansing.

that removing as much as 50% of the poisoned FT data does
not undermine the semantic-level privacy preservation of
Poison2Cure, despite the general sensing accuracy declining
due to the reduced size of the FT dataset.
As for the lower-pass filter, we let the AP filter out high

Doppler frequencies in both the pre-training and the FT
datasets, with the cutoff frequency ranging from 2Hz to
128Hz. Two cases are evaluated: i) the Doppler frequency
bound set by the user equals that of the AP’s filter, and ii)
the Doppler frequency bound of the user is fixed to 16Hz.
As shown in Figure 15(b), when the datasets of both pre-
training and FT are filtered accordingly, even a Doppler fre-
quency bound of 2Hz does not compromise the efficacy of
Poison2Cure. Besides, Figure 15(b) confirms that the efficacy
of Poison2Cure is resilient to the discrepancy between the
Doppler frequency bounds adopted by the user and the AP,
regardless of whether the user’s bound is lower or higher.

6 DISCUSSION
We discuss two important aspects of Poison2Cure in its pur-
suit of becoming a standard paradigm for privacy-preserving
multi-user Wi-Fi sensing: its practicability and susceptibility.
Practicability. Though we do not assume the AP to be

fully cooperative (otherwise, there is no need for privacy
preservation), a certain level of cooperation between the
AP and the user is needed by Poison2Cure. Firstly, the AP
manufacturer needs to disclose the functionality and rough
architecture of its neural model and allow users to upload
their prepared FT datasets. Despite the seemingly demanding
appearance of these conditions, the AP manufacturer has the
incentive to make such compromises because it is business-
oriented, i.e., its primary goal is to popularize its products
and sensing services, while collecting (private) information
from users is its secondary goal.

For the primary goal of the AP, open-source is recognized
as a key factor in the popularization and trustworthiness of
AI services. Many successful AI services, such as Google’s
Gemma [13], Meta’s Llama [3], and DeepSeek-AI’s DeepSeek
LLM [14], have gained users’ trust and expanded market
share by open-sourcing their models. In the field of Wi-Fi

sensing, projects such as Widar3.0 [88], MUSE-Fi [29], and
SenseFi [75], etc., have also open-sourced their neural mod-
els, contributing to transparency and collaboration. While
commercial deployment of Wi-Fi sensing is still in its early
stage, the above examples suggest the AP manufacturers’
strong incentives to disclose partial information about their
neural models when entering the market, thereby encour-
aging users to adopt their services. In this regard, certain
agreements and legislation could be established to enforce
these conditions.

Secondly, although the users’ motivation is clearly driven
by their desire for sensing services, collecting an FT dataset
could be laborious as tens of samples are needed for each
activity. Fortunately, this labor could be alleviated by enhanc-
ing the FT process with advanced few-shot learning [76] and
one-shot learning [71] techniques, which can significantly re-
duce the number of required samples per activity to just a few
or only one. In these cases, the FT becomes more sensitive
to the small number of samples, potentially making it more
convenient to craft CSI poisons for privacy preservation.
Susceptibility. Poison2Cure would be susceptible if the

AP were able to detect and remove CSI poisons or could
restore the original clean CSI data. In Figure 16, we com-
pare a pair of clean and poisoned CSI data through their
spectrograms obtained by continuous wavelet transforma-
tion (CWT) [82] and STFT [65]. It is evident that, in terms
of their temporal-spectral features, the poisoned CSI data is
virtually indistinguishable from the clean one and thus can
be hardly detected.
This advantage, however, may turn out to be a new sus-

ceptibility. Specifically, given channel reciprocity, the AP can
record non-poisoned CSI data of the user and match it with
those in the user-uploaded FT dataset to acquire their activ-
ity labels. However, since the actual timing for the user’s
CSI collection is unpredictable by the AP, the AP has to con-
tinuously record reciprocal CSI to prepare for the matching,
leading to prohibitive memory and computational costs due
to its limited hardware resources.
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In summary, the poisoned CSI data are undetectable by
the AP unless at an unacceptable cost. Furthermore, the sus-
ceptibility to matching can be completely prevented if data
condensation techniques [77, 87] are employed to condense
the poisoned FT dataset into a distinct and much smaller one
with equivalent training efficacy. In this way, not only are
the transmission overheads reduced, but also the matching
between labels and non-poisoned CSI data is prevented.

7 RELATEDWORKS
Poison2Cure is closely related to cross-domainWi-Fi sensing
and privacy preservation techniques for wireless sensing.
Cross-Domain Wi-Fi sensing. Due to the multipath effect,

Wi-Fi sensing techniques are generally domain-sensitive. In
literature, several cross-domain techniques are proposed,
which Poison2Cure is highly related to as a special cross-
domain paradigm. One of the main branches of work [29, 37,
51] adopts the DFS of CSI for cross-domain sensing, leverag-
ing its time-frequency decomposition of the CSI variations.
Widar 3.0 [86] processes the DFS at multiple receivers to
obtain the BVP for cross-domain gesture recognition. Gao et
al. [20] use multiple pairs of transceivers and derive cross-
position features for motion direction changes, which is ex-
tended to DFS in [54]. Cross-domain Wi-Fi sensing tech-
niques have also been actively studied from the perspective
of machine learning. EI [32] uses adversarial learning to
extract domain-invariant features from CSI automatically,
which is enhanced with data augmentation in [67]. Addition-
ally, with powerful generative adversarial networks, Li et
al. [41] propose to further enhance the generalizability of
sensing by using synthesized CSI data of diverse domains.
However, in multi-user Wi-Fi sensing scenarios, the im-

pact of the user’s nuances becomes significant and harder
to predict. In this case, real samples from the target domain
are necessary to fine-tune the neural model. Using collected
real samples, CrossSense [81] and SIDA [80] learn the map-
ping between the data in the target domain and that in the
training domains. To reduce the number of required samples,
Fewsense [76] utilizes few-shot learning, while RF-Net [16]
and Wi-Learner [17] resort to one-shot learning. Yet, these
approaches have no privacy-preserving mechanisms and
may compromise users’ sensitive activities.
Privacy Preservation in Wireless Sensing. Given the per-

vasive presence of wireless signals in our living environ-
ments, users’ privacy is inevitably exposed to wireless sens-
ing. PhyCloak [57] first uses a relay to distort the physi-
cal information in the signals received by unauthorized de-
vices. Similarly, Cominelli et al. [11, 12] focus on obfuscating
the location-relevant information carried by the CSI. Be-
sides, IRShield [63] leverages an intelligent reflecting surface

as a novel approach for CSI obfuscation. MIMOCrypt [48]
and Secur-Fi [52] use codebooks shared between autho-
rized transceivers to encrypt CSI and prevent eavesdrop-
ping. Nevertheless, the above approaches cannot preserve
privacy at a semantic level. To thwart the sensing of only
the private activities, existing works resort to adversarial
attacks [45, 72, 84, 89] and add specially designed perturba-
tions to CSI at the receiver side, inducing neural models to
misclassify private activities. Furthermore, Huang et al. [30]
propose a transmitter-side on-device perturbation method
against only wireless positioning. However, similar to CSI
obfuscation, adversarial perturbations of CSI are also domain-
specific, and their reliable injection requires manipulation
of real-time CSI, rendering them hardly compatible with
prevalent Wi-Fi hardware.

8 CONCLUSION
Aiming at preserving users’ privacy from ubiquitous Wi-Fi
sensing, Poison2Cure has pioneered a data poisoning frame-
work for semantic-level privacy preservation. Leveraging
the necessary cross-user calibration of the AP, where a user
provides the AP’s neural model with labeled CSI data for FT,
Poison2Cure has successfully enabled the user to poison the
CSI data, neutralizing the AP’s sensing ability for private
activities without undermining that for regular ones. This
success is attributed to our efficient CSI poisoning method;
we have achieved a significant complexity reduction to fit
it for resource-limited users and extended its efficacy over
confidential neural models and CSI data cleansing. Our exten-
sive evaluations have evidently confirmed that Poison2Cure
can work under diverse conditions, including different pre-
processing of CSI data and distinct neural model architec-
tures. Furthermore, it has also been verified that Poison2Cure
is robust to changes in environments, users, and private activ-
ities. Owing to its proven efficacy and full compatibility with
any underlying Wi-Fi hardware and firmware, we believe
the paradigm-shifting Poison2Cure can be widely popular
in future practice. Meanwhile, we are also studying secu-
rity of Wi-Fi sensing under ISAC framework [9, 24] and
also its co-existence with other co-channel communication
systems [38, 73] as part of our future work.
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